/*! \file main.c \brief SPI fullduplex communication use polling mode \version 2017-02-10, V1.0.0, firmware for GD32F30x \version 2018-10-10, V1.1.0, firmware for GD32F30x \version 2018-12-25, V2.0.0, firmware for GD32F30x \version 2020-09-30, V2.1.0, firmware for GD32F30x */ /* Copyright (c) 2020, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32f30x.h" #include "gd32f307c_eval.h" #define SPI_CRC_ENABLE 0 #define ARRAYSIZE 10 #define SET_SPI0_NSS_HIGH gpio_bit_set(GPIOA,GPIO_PIN_3); #define SET_SPI0_NSS_LOW gpio_bit_reset(GPIOA,GPIO_PIN_3); uint32_t send_n = 0, receive_n = 0; uint32_t crc_value1 = 0, crc_value2 = 0; uint8_t spi0_send_array[ARRAYSIZE] = {0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA}; uint8_t spi2_send_array[ARRAYSIZE] = {0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA}; uint8_t spi0_receive_array[ARRAYSIZE]; uint8_t spi2_receive_array[ARRAYSIZE]; ErrStatus memory_compare(uint8_t* src, uint8_t* dst, uint8_t length); void rcu_config(void); void gpio_config(void); void spi_config(void); /*! \brief main function \param[in] none \param[out] none \retval none */ int main(void) { /* init led2 and led3 */ gd_eval_led_init(LED2); gd_eval_led_init(LED3); /* peripheral clock enable */ rcu_config(); /* GPIO config */ gpio_config(); /* SPI config */ spi_config(); SET_SPI0_NSS_HIGH /* SPI enable */ spi_enable(SPI2); spi_enable(SPI0); SET_SPI0_NSS_LOW #if SPI_CRC_ENABLE /* wait for transmit completed */ while(send_n < (ARRAYSIZE - 1)) { while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_TBE)) { } spi_i2s_data_transmit(SPI2, spi2_send_array[send_n]); while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE)) { } spi_i2s_data_transmit(SPI0, spi0_send_array[send_n++]); while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE)) { } spi2_receive_array[receive_n] = spi_i2s_data_receive(SPI2); while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE)) { } spi0_receive_array[receive_n++] = spi_i2s_data_receive(SPI0); } /* send the last data */ while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_TBE)) { } spi_i2s_data_transmit(SPI2, spi2_send_array[send_n]); while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE)) { } spi_i2s_data_transmit(SPI0, spi0_send_array[send_n++]); /* send the CRC value */ spi_crc_next(SPI2); spi_crc_next(SPI0); /* receive the last data */ while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE)) { } spi0_receive_array[receive_n] = spi_i2s_data_receive(SPI0); while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE)) { } spi2_receive_array[receive_n++] = spi_i2s_data_receive(SPI2); /* receive the CRC value */ while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE)) { } while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE)) { } crc_value1 = spi_i2s_data_receive(SPI0); crc_value2 = spi_i2s_data_receive(SPI2); SET_SPI0_NSS_HIGH /* check the CRC error status */ if(SET != spi_i2s_flag_get(SPI0, SPI_FLAG_CRCERR)) { gd_eval_led_on(LED2); } else { gd_eval_led_off(LED2); } if(SET != spi_i2s_flag_get(SPI2, SPI_FLAG_CRCERR)) { gd_eval_led_on(LED3); } else { gd_eval_led_off(LED3); } #else /* wait for transmit complete */ while(send_n < ARRAYSIZE){ while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_TBE)); spi_i2s_data_transmit(SPI2, spi2_send_array[send_n]); while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE)); spi_i2s_data_transmit(SPI0, spi0_send_array[send_n++]); while(RESET == spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE)); spi2_receive_array[receive_n] = spi_i2s_data_receive(SPI2); while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE)); spi0_receive_array[receive_n++] = spi_i2s_data_receive(SPI0); } SET_SPI0_NSS_HIGH /* compare receive data with send data */ if(memory_compare(spi2_receive_array, spi0_send_array, ARRAYSIZE)) { gd_eval_led_on(LED2); } else { gd_eval_led_off(LED2); } if(memory_compare(spi0_receive_array, spi2_send_array, ARRAYSIZE)) { gd_eval_led_on(LED3); } else { gd_eval_led_off(LED3); } #endif /* enable CRC function */ while(1); } /*! \brief configure different peripheral clocks \param[in] none \param[out] none \retval none */ void rcu_config(void) { rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOC); rcu_periph_clock_enable(RCU_SPI0); rcu_periph_clock_enable(RCU_SPI2); rcu_periph_clock_enable(RCU_AF); } /*! \brief configure the GPIO peripheral \param[in] none \param[out] none \retval none */ void gpio_config(void) { /* SPI0 GPIO config:SCK/PA5, MISO/PA6, MOSI/PA7 */ gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_5 | GPIO_PIN_7); gpio_init(GPIOA, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_6); /* PA3 as NSS */ gpio_init(GPIOA, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3); gpio_pin_remap_config(GPIO_SPI2_REMAP, ENABLE); /* SPI2 GPIO config: NSS/PA4, SCK/PC10, MISO/PC11, MOSI/PC12 */ gpio_init(GPIOC, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_10 | GPIO_PIN_12); gpio_init(GPIOC, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_11); gpio_init(GPIOA, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_4); } /*! \brief configure the SPI peripheral \param[in] none \param[out] none \retval none */ void spi_config(void) { spi_parameter_struct spi_init_struct; /* SPI0 parameter config */ spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX; spi_init_struct.device_mode = SPI_MASTER; spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT; spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE; spi_init_struct.nss = SPI_NSS_SOFT; spi_init_struct.prescale = SPI_PSC_256; spi_init_struct.endian = SPI_ENDIAN_MSB; spi_init(SPI0, &spi_init_struct); /* SPI2 parameter config */ spi_init_struct.device_mode = SPI_SLAVE; spi_init_struct.nss = SPI_NSS_HARD; spi_init(SPI2, &spi_init_struct); #if SPI_CRC_ENABLE /* configure SPI CRC function */ spi_crc_polynomial_set(SPI0, 7); spi_crc_polynomial_set(SPI2, 7); spi_crc_on(SPI0); spi_crc_on(SPI2); #endif /* enable CRC function */ } /*! \brief memory compare function \param[in] src: source data pointer \param[in] dst: destination data pointer \param[in] length: the compare data length \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus memory_compare(uint8_t* src, uint8_t* dst, uint8_t length) { while (length--){ if (*src++ != *dst++) return ERROR; } return SUCCESS; }